A block-by-block method for Volterra integro-differential equations with weakly-singular kernel
نویسندگان
چکیده
منابع مشابه
Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملApplication of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملSeries Solution of Weakly-Singular Kernel Volterra Integro-Differential Equations by the Combined Laplace-Adomian Method
To solve the weakly-singular Volterra integro-differential equations, the combined method of the Laplace Transform Method and the Adomian Decomposition Method is used. As a result, series solutions of the equations are constructed. In order to explore the rapid decay of the equations, the pade approximation is used. The results present validity and great potential of the method as a powerful al...
متن کاملA Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel
Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1981
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1981-0616362-2